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RESUMO

A RoboCup Soccer 3D Simulation League fornece um ambiente rico além de desafios
que incitam o avanço da área de inteligência robótica, sendo amplamente disponível para
estudantes e desempenhando um papel significativo na educação. Neste estudo, abordamos o
desafio de desenvolver um agente para controlar de maneira hábil um robô humanoide simulado
na habilidade de driblar, utilizando o código aberto disponível do atual campeão mundial da liga,
FCPortugal, como base, emparelhado com Aprendizado por Reforço Profundo e Aprendizado
Curricular. Como o comportamento do agente treinado com nossas configurações é subótimo,
discutimos os sucessos e as deficiências de nossos métodos e propomos melhorias para trabalhos
futuros.

Palavras-chave: Controle Motor Robótico. Aprendizagem por reforço. Drible RoboCup



ABSTRACT

RoboCup Soccer 3D Simulation League provides a rich environment and challenges that
incite the advance of state of the art of intelligent robots, while being widely available to students
and plays a significant role in the robotics education. In this study we address the challenge of
developing an agent to dexterously control a simulated humanoid robot in the skill of dribbling
utilizing the current world champion in the league, FCPortugal’s available open source code
as a base paired with deep Reinforcement Learning and Curriculum Learning. As the trained
agent behavior with our settings is suboptimal, we discuss the successes and shortcomings of our
methods and propose improvements for future works.

Keywords: Robot Soccer. Deep Reinforcement Learning. RoboCup Gait.
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1 INTRODUCTION

RoboCup is an international initiative estabilished in 1997 that promotes scientific
advances on robotic intelligence through competition, the main goal is to have a team of robots
winning a match of soccer against the human soccer world champions by 2050. Hence many
obstacles must be overcomed like team strategy, comunication and cooperation in a collective
level, but also indivual skills like gait, ballance, ball control, and many more examples.

To tackle different challanges, different RoboCup leagues, each with their level of
abstraction, were created, the subject of our work is the 3D Soccer Simulation League (3DSSL)
who provides a simulated enviroment and the standard humanoid robots, the real life counterpart
model is utilized in the RoboCup Standard Plataform League.

The current league champion is the FC Portugal team, as it was shown in (Abreu et al.,
2023) they were able to successfully train the agent in a set of skills that are usefull in a match,
and also the high level strategy. Within the spirit of the RoboCup, the codebase is released for
the public to improve and advance research.

The skills learned by the agent in this work are trained through Deep Reinforcement
Learning (deep RL), which is a machine learning technique inspired by the idea of learning
naturally by trial and error. Being in a simulated environment benefits the RL greatly since it can
be accelerated, parallelized, and the environment be easily restarted at each attempt, just to name
a few advantages.

The codebase for FC Portugal provides a strong foundation for developing new skills
and behaviors, so it was used and modified to train the agent to achieve our goals.

1.1 OBJECTIVE

This works aims to generate a more natural Dribbling behavior of the the physically
simulated robotic character of the RoboCup Simulated 3D League utilizing Deep Reinforcement
Learning and Curriculum Learning as well as other classical complementary robotics algorithms.

To generate a gait and the desired dribbling behavior, we will be utilizing the open source
code developed by FCPortugal’s team as a starting point, taking advantage of the developed basic
functions that are made available to the scientific community.

In summary, this study aims to setup the environment, train the model and analyze the
result, proposing improvements.

1.2 STUDY OUTLINE

This study is divided in 6 chapters. Chapter 2 contains an overview on current literature
of topics that will be important to the understanding of the work, such as the machine learning
techniques utilized and the technologies closely related. Chapter 3 presents related work on
the field of character animation on physically simulated environments and biped robotics in the
context of RoboCup.

Chapter 4 introduced the proposed machine learning pipeline in detail in which the
agents will be trained, as well as the reward design of each proposed curriculum, and Chapter
5 discusses the evaluation of the training techniques the resulting final trained model. Finally
Chapter 6 summarizes this study by evaluating its achievements and proposes improvements for
future works.
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2 BACKGROUND

This chapter reviews the literature on the RoboCup Simulation environment and
technologies as well as it introduces the machine learning algorithms used in this study.

2.1 ROBOCUP SOCCER SIMULATION - 3D LEAGUE

The RoboCup Soccer Simulation (SSIM) is subdivided in the 2D and 3D leagues
(Federation, 2024; League, 2024), this study utilizes the environment and tools intended for the
3D league (3dT, 2024) such as the physical multiagent simulator: SimSpark (SimSpark, 2024a),
the responsible for creating a server where the simulation runs: rcssserver3d (SimSpark, 2024b)
and the monitor and visualizer tool: RoboViz (MagmaOffenburg, 2024).

2.1.1 NAO Robot Model

NAO is the name of the model made by Alderan Robotics (Robotics, 2024), the biped
humanoid robot has about 57cm of heigh, weights 4.5Kg and it is a well known model by the
academic community, it is the model used by SSIM 3D League and by the real life Standard
League.

(a) The real NAO (b) NAO Model Simulated

The simulated model has 22 degrees of freedom (DoF), a gyroscope and an accelerometer
located at the center of the torso, a force resistance perceptor in each foot to indicate pressure, a
visual perceptor at the center of the head, a say effector and a hear percetor for communication
purposes, each hinge is represented by a hinge joint perceptor and manipulable through the
corresponding hinge joint effector. (SimSpark-Aldebaran, 2024)

2.2 REINFORCEMENT LEARNING

Reinforcement Learning (RL) studies how an agent learns and improves through
interactions with a given environment (Sutton e Barto, 2018). The agent discretely interacts
through actions within the environment and receives a reward and observations, as shown in 2.3,
the agent updates its internal function’s parameters with the objective of outputting actions that
maximize the reward. In our case, the agent is the NAO robot and the environment is soccer field
adapted to the robot size, both simulated by the physics simulator SimSpark.

A Markov Decision Process (MDP) is the mathematical framework in which an RL
problem can be expressed: it is a 4-tuple (𝑆, 𝐴, 𝑃, 𝑅) where: set of states 𝑆, set of actions 𝐴,
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Figura 2.2: NAO Model Anatomy

Figura 2.3: Interactions between agent and environment

𝑃 (2.1) is the probability that an action 𝑎 in a state 𝑠 will lead to the state 𝑠′ and 𝑅 (2.2) is the
expected immediate reward received after transitioning from state 𝑠 to 𝑠′ by action 𝑎.

𝑝(𝑠′|𝑠, 𝑎) = 𝑃𝑟{𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎} (2.1)

𝑟 (𝑠′, 𝑠, 𝑎) = E[𝑅𝑡+1 |𝑆𝑡+1 = 𝑠′, 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (2.2)

2.3 CURRICULUM LEARNING

One of the issues that arises when utilizing Reinforcement Learning is to design a reward
function that can generate the desired behavior from the training, that is, the desired behavior
must be reinforced by the reward function. The reward function can get convoluted and specific
as the goal gets more complex, and one approach that tries to solve this problem is Curriculum
Learning (CL). (Bengio et al., 2009)

In Curriculum Learning, the goal is separated in sub-tasks that are ordered by increasing
difficulty, the agent will learn first the easier task and after it is mastered, it will move to a
following harder task. In CL the researcher must be able to divide a task and order the sub-tasks
in difficulty, as well as determine an heuristic to decide when to change the goal forward.(Muzio
et al., 2022)
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3 RELATED WORK

This chapter discuss related work on different areas that are pertinent to our research,
since skill learning on robotics is an active and popular research area and have much work to be
comprehensive, this chapter will primarily focus on works that are closely related to our own.

3.1 HUMANOID GAIT WITH RL

In a well known DeepMind paper (Heess et al., 2017), where the goal was to achieve
sophisticated locomotion skill of characters on a physically simulated environment utilizing only
simple rewards and rich environments. The results were impressive as the agents were able to
run, jump and navigate through obstacles, but the downsides of utilizing only deep RL to learn
complex behaviors, as demonstrated in the work, is the sample inefficiency, and as the degrees
of freedom increases the algorithm tends to generate less impressive gaits and behaviors that
suggest the agent to be stuck in local.

Figura 3.1: DeepMind Humanoid Character gait in several environments

The humanoid character has 28 DoF and 21 joint actuators and was able to succeed
in every environment but the gait was not "human like"as can bee seen in 3.1. This work is
important to denote the limits of what can be achieved without utilizing specialized algorithms
or classical robotics techniques.

3.2 ROBOCUP LOCOMOTION

FCPortugal’s team (Abreu et al., 2023) uses a simplified version of the walking engine
proposed by (Kasaei et al., 2017) that combines well-known techniques such as the concept of
Zero Moment Point (ZMP) firstly utilized in the context of legged locomotion by (Vukobratovic
et al., 1970) and Linear Inverted Pendulum Motion (LIPM) (Kajita e Tani, 1991) that are able
to generate stable humanoid gait. This approach is not uncommon and is also utilized by
similar walking engines such as the developed by (de Albuquerque Maximo, 2015) utilized by
ITAndroids.

Realizing that the common trait of skills from the locomotion skill-set that includes
Omnidirectional Walk, Dribble and Push is alternating lifting each foot, Abreu et al. were able
to simplify Kasaei et al.’s walking engine to create a cyclic and smooth stationary walk, this
approach resulted in an primitive with improved stability and allowed easier transitions between
the skills termed Step Baseline.

The Step Baseline as seen in 3.2 operates in the background as a skill set primitive for
the locomotion skill set but not to the other skills such as Get Up and Kick
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Figura 3.2: Example of the locomotion set in use as the Step Baseline operates in the background as the agent walks,
pushes and dribbles. The agent kick, falls and get up, to start walking. (a) is the transition from dribble to walk and
(b) transition between falling after kicking and getting up
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4 PROPOSAL

This chapter explains in details what is the object of training and our approach to
implement a new behavior to dribble. It defines the tasks of running and dribbling as well as the
reward functions that will be utilized in the RL.

4.1 SIMULATION

RoboCup Simulation League 3D utilizes SimSpark as the official physical engine, to
interface with it we are using the code provided by the current league winner: FCPortugal. The
code contains an walking engine and utilizes Stable Baselines 3 as the implementation of the
deep RL algorithms.

4.2 TASKS

We are utilizing the curriculum learning approach, that means that the agent will be
trained first to perform the most simple task, running, and after deemed proficient, it will be
trained in the more complex task, dribbling, that contains the first and will have an advantageous
start than training from scratch.

For simplicity, both tasks have the same observation space, which is the information
given by the environment to the agent is an array with 70 positions containing values deemed
important to the agent and are updated at every step of the simulation, the information contained
in the observation space is described in Table 4.1.

Index Observation
0 simulation step counter
1 z coordinate (torso)
2 z velocity (torso)
3 absolute orientation in deg
4 absolute torso roll in deg
5 absolute torso pitch in deg

6:9 gyroscope
9:12 accelerometer
12:18 left foot: relative point of origin and force vector
18:24 right foot: relative point of origin and force vector
24:44 position of all joints except head and toes (for robot type 4)
44:64 speed of all joints except head and toes (for robot type 4)

64 step duration in time steps
65 vertical movement span
66 relative extension of support leg
67 step progress
68 if left leg is active
69 if right leg is active

Tabela 4.1: Observation space indexes and description
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The action space is an array with the 22 hinge joint effectors available on the NAO robot
model and are described in the Table 4.2. The agent can move the hinges within the limits given
by the Step Baseline primitive, so the gait will be stable and somewhat predictable.

Index Description Hinge Joint
1 Yaw [0][0]
2 Pitch [0][1]
3 Shoulder Pitch [1][0]
4 Shoulder Yaw [1][1]
5 Arm Roll [1][2]
6 Arm Yaw [1][3]
7 Hip YawPitch [2][0]
8 Hip Roll [2][1]
9 Hip Pitch [2][2]
10 Knee Pitch [2][3]
11 Foot Pitch [2][4]
12 Foot Roll [2][5]
13 Hip YawPitch [3][0]
14 Hip Roll [3][1]
15 Hip Pitch [3][2]
16 Knee Pitch [3][3]
17 Foot Pitch [3][4]
18 Foot Roll [3][5]
19 Shoulder Pitch [4][0]
20 Shoulder Yaw [4][1]
21 Arm Roll [4][2]
22 Arm Yaw [4][3]

Tabela 4.2: Action space indexes, description and hinge joint reference

4.2.1 Run

The goal of running is to achieve the maximum velocity without falling, the agent will
start at the position X = -14 and its goal is to increase the value of X as can be seen in 4.1 the
terminal state is when the agent is considered to be falling or the simulation achieves the step
timeout of 300 steps 4.2.

𝑟 (𝑠, 𝑎) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑋 − 𝐿𝑎𝑠𝑡𝑋 (4.1)

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 = (𝑇𝑜𝑟𝑠𝑜𝑍 < 0.3)𝑜𝑟 (𝑆𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡𝑒𝑟 > 300) (4.2)

4.2.2 Dribble

Our goal in dribbling is to move forward while keeping control of the ball in a certain
distance of the agent such as a real human player, in other words, perform small kicks while
running. There were two approaches for the reward design, the first one4.3, inspired by (Muzio
et al., 2022) and (Hausknecht e Stone, 2015), where the distance from the ball to the agent were
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considered together with the advancing of the ball in the X axis, and the second more simple
approach 4.4 were only the ball movement in the field is taken into consideration.

𝑟 (𝑠, 𝑎) = (𝑑𝑡−1
𝑏𝑎𝑙𝑙−𝑎𝑔𝑒𝑛𝑡 − 𝑑𝑡

𝑏𝑎𝑙𝑙−𝑎𝑔𝑒𝑛𝑡) + 0.05𝑒(𝑑
𝑡
𝑏𝑎𝑙𝑙−𝑎𝑔𝑒𝑛𝑡 ) + 5Δ𝑥𝑏𝑎𝑙𝑙 (4.3)

The value 𝑑𝑡
𝑏𝑎𝑙𝑙−𝑎𝑔𝑒𝑛𝑡 is the distance between the ball and the agent in a given time-step

𝑡, so the first part of the equation 4.3 is rewarding the agent to increase the distance, that is, to
kick the ball, followed by the term 0.05𝑒(𝑑

𝑡
𝑏𝑎𝑙𝑙−𝑎𝑔𝑒𝑛𝑡 ) that reward the agent to approach the ball,

and finally Δ𝑥𝑏𝑎𝑙𝑙 is the difference between the ball position in the 𝑥 axis since the last time-step,
therefore the term 5Δ𝑥𝑏𝑎𝑙𝑙 accounts the ball moving forward in the field.

𝑟 (𝑠, 𝑎) = 3Δ𝑥𝑏𝑎𝑙𝑙 − Δ𝑦𝑏𝑎𝑙𝑙 (4.4)

The intention of the reward function of 4.4 is to keep it more simple and to take in
account the ball movement in the 𝑦 axis. The terminal state is equal in both approaches, it is
similar as the 4.2 in the first to terms but also considers the agent losing the ball as a reason to
terminate, that is, if the agent runs in front of the ball more than a meter.

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙 = (𝑇𝑜𝑟𝑠𝑜𝑍 < 0.3)𝑜𝑟 (𝑆𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡𝑒𝑟 > 300)𝑜𝑟 (𝑥𝑏𝑎𝑙𝑙 − 𝑥𝑎𝑔𝑒𝑛𝑡 > 1) (4.5)
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5 RESULTS AND DISCUSSION

This chapter evaluates the training methods and the final agent in their specific tasks. It
compares the agents that emerged from the different reward function on Dribbling and concludes
by analyzing the achievements of the proposal.

5.1 RUNNING

Figura 5.1: Set of frames showing the running skill

Figura 5.2: Training the Running skill. Graph of the Reward (blue) and Length (red) of an episode of training as the
time-steps increases (x-axis)

The figure 5.2 is a chart representing the training of the agent, the x-axis is the time step
where an evaluation is recorded, since training is divided between 16 instances of environments,
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each one having 1024 steps, and the evaluation taking place when every environment run 20
episodes, that means, at every 16 ∗ 1024 ∗ 20 = 327680 steps an evaluation is recorded, therefore
the X-axis starts at 327, 680 and finishes at 20, 643, 840 steps.

The blue line represents the Reward per episode and it increases steadily until it stabilizes.
The red line is the length of each episode and in this case is caped at 300 steps, every episode
the agent finishes under 300 steps is an episode where the agent has fallen and terminated the
evaluation earlier.

The running gait achieved can bee seen in the figure 5.1. The results were similar to
(Abreu et al., 2023) as it uses the same Step Baseline primitive and the velocity is about 0,9 m/s.
To test the skill, two hundred evaluations were made and the results can be seen in the histogram
in the figure 5.3.

Figura 5.3: Reward histogram of two hundred evaluation of the fully trained agent on the running skill

The results of the two hundred evaluations are interesting because they reveal that the
running achieved is not so reliable as the episodes often finalizes with the agent falling, the
average reward was 5, 41 and the average steps until termination was 204. The histogram 5.3
shows a high concentration of cases in both ends of the spectrum, meaning that the agent may
fall at the beginning of the episode, and if it is able to start running, it will keep running until the
end of the episode.

5.2 DRIBBLING

After the agent is able to run while maintaining balance and velocity, we change the
curriculum to train the dribbling skill. Since we had two difference reward designs, two behaviors
emerged and will be discussed separately in the following subsections.

The figure 5.4 shows an example of an agent after being trained on the dribble skill
utilizing the reward function 4.3 termed Complex Reward and it is discussed in 5.2.1, consequently,
the reward function of the equation 4.4 is termed Simple Reward at the 5.2.2 chapter.

5.2.1 Complex Reward

The training evaluation method is the same as the one described in the chapter 5.1: at
every 327, 680 steps an evaluation is made and the reward and steps are recorded. The results of
the skill training can be seen at 5.5 and are not a representation of a successful trained behavior
such as the 5.2.
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Figura 5.4: Set of frames showing the dribble skill. From top to bottom, left to right, the agent starts running, kicks
the ball and loses the ball as it keeps running.

Figura 5.5: Training the Dribble skill with the regular reward (4.3). Graph of the Reward (blue) and Length (red) of
an episode of training as the time-steps increases (x-axis)

The chart shows a decline in performance as the training continues, the reward per
episode decreases in complete opposite of what is expected, and the trend is to have an agent
worst then when it begins. The complex reward function take in account the distance between the
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agent and the ball, this can be seen in the final behavior as the agent decreases its velocity when
it looses control of the ball while it runs forward without being able to correct its path.

Figura 5.6: Reward histogram of two hundred evaluation of the fully trained agent on the dribbling skill with a
complex reward.

Figura 5.7: Box plot of the two hundred evaluations of a fully trained agent on the dribbling skill with a complex
reward.

Two hundred evaluations were made with the fully trained agent and the results can be
seen in 5.7 and 5.6, the average reward was 7, 95 and the average of steps taken are 173.

5.2.2 Simple Reward

In this approach, only the ball (x, y) position in the field is taken into account, the
intention behind the reward design is to have the agent to perform a strong and straight kick, and
run forward. The training evaluation can be seen at 5.8 and it has similar issues as the Complex
Reward.

As the training continues the reward tends to decrease and the agent’s performance gets
worst. The emerged behavior has a poor performance, four hundred evaluations were made and
the results can be seen at figures 5.9 and 5.10, the average reward is 6, 42 and the average episode
length is 131.
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Figura 5.8: Training the Dribble skill with the simple reward (4.4). Graph of the Reward (blue) and Length (red) of
an episode of training as the time-steps increases (x-axis)

Figura 5.9: Reward histogram of two hundred evaluation of the fully trained agent on the dribbling skill with a
simple reward.

Figura 5.10: Box plot of the two hundred evaluations of a fully trained agent on the dribbling skill with a simple
reward.
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5.3 CONCLUSION

Both reward functions described in this work were unable to produce the intended
complex behavior of dribbling forward, both behaviors share a few major problems, when able to
kick the ball, it is common for the agent to lose it as the trajectory of the robot is not corrected to
the trajectory of the ball and the episode is terminated, and at many times, the agent is unable
to perform the first kick as it runs by the sides of the ball without touching it or the agent loses
balance and falls even before.

Since falling at the beginning of the episode without being able to start running is a
common trait of the agent trained in running, and the trait was then reproduced by the agent
trained in dribbling, this is an example of the downside of utilizing the Curriculum Learning
approach, the errors produced at first curriculum will most likely be reproduced forward as the
goal gets more complex and can prevent the agent to achieve better results.

The agent being unable to correct its trajectory towards the ball is a problem that
would be the limitation even for a completely balanced agent, therefore is the major flaw of the
second curriculum. Although in the Complex Behavior the reward function takes into account
the distance between the agent and the ball, it is not enough to develop an efficient route that
intercepts the ball.
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6 CONCLUSION

This chapter concludes this work by summarizing its achievements and discussing
possible improvements that can be explored in future works on the subject of humanoid motor
skills in robotics or physically simulated characters.

6.1 SUMMARY

Utilizing the code base of the current world champion in RoboCup Soccer Simulation
3D League we were able to setup an environment and train a machine learning model with
the goal of generating a human-like motor control to dribble a ball forward. The behaviors
that emerged from the different rewards were not satisfactory but made possible to analyze the
difficulties when working with RL to control a character with a considerably high DoF and a
moving object as the ball.

In addition, we were able to analyze the impact of the reward design on the final emerged
behavior, with the particularities of the Curriculum Learning.

In conclusion, the approach taken relying on rewards to create a skilled robot able to
balance and dribble forward can be seen as naive, as it doesn’t actually control the ball but rather
march forward hoping to intercept the ball and provoke it to move.

6.2 FUTURE WORKS

To address the problems discussed on Chapter 5.3, the running gait can be improved
to be more reliable by lessening the rates where the agent falls at the beginning of the episode,
to accomplish this, different rewards can be tested such as penalties for falling or a maximum
velocity.

As for the dribbling skill, the main issue was the lack of maneuverability of the agent,
redirecting the agent at each contact with the ball can have much impact on the resulting model
and may be able to generate a much more dynamic player.

To create a more natural gait and develop robust skills with sample efficiency, the
approach of (Peng et al., 2018), where the agent is trained first to mimic an specialist (motion
capture data) and to later reproduce in different scenarios.

Finally this work does not take into consideration the RoboCup environment as a soccer
match, the achieve a functioning dribble skill the agent must be able to control the ball within a
field with adversaries and teammates, as well as to kick precisely to pass or to score.
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